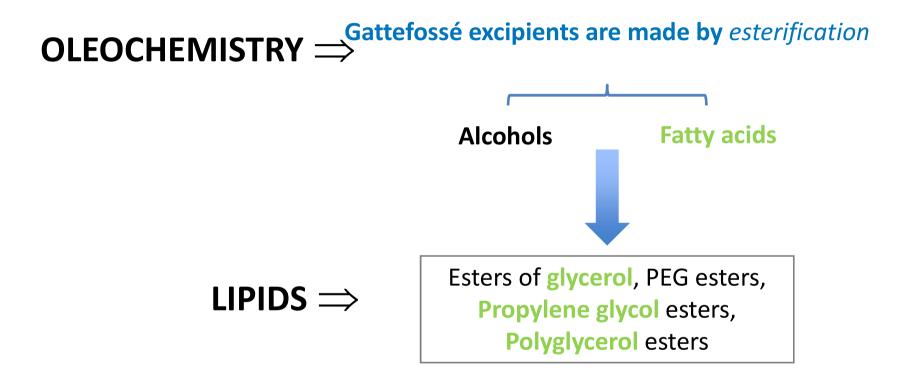


Compritol® 888 ATO The Smart Strategy for Sustained Release Formulation

People make our name

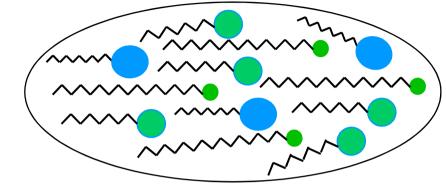
PRESENTATION CONTENTS

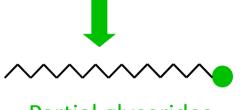
- Introduction
- Compritol 888 ATO: Product overview
- Compritol 888 ATO: Product properties
- Formulating SR Tablets with Compritol 888: Gattefossé Strategy
- How to Modulate Release Profiles: Key Parameters
- Lipidic Matrix Performance
- Conclusion



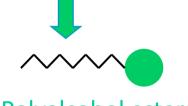
PRESENTATION CONTENTS

- Introduction
- Compritol 888 ATO: Product overview
- Compritol 888 ATO: Product properties
- Formulating SR Tablets with Compritol 888: Gattefossé Strategy
- How to Modulate Release Profiles: Key Parameters
- Lipidic Matrix Performance
- Conclusion

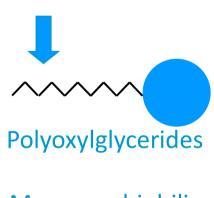

GATTEFOSSÉ FUNCTIONAL EXCIPIENTS


FUNCTIONAL EXCIPIENTS

THE GATTEFOSSÉ LIPID FAMILY



All products are derived from vegetable oils and fats

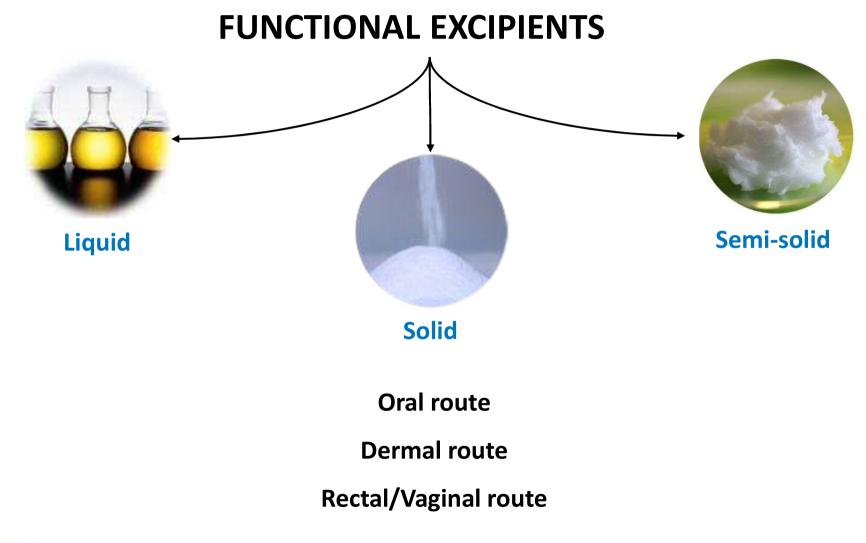

Partial glycerides More lipophilic

- Oily vehicle
- Solubilizer
- Sustained release agent
- Taste-masking agent

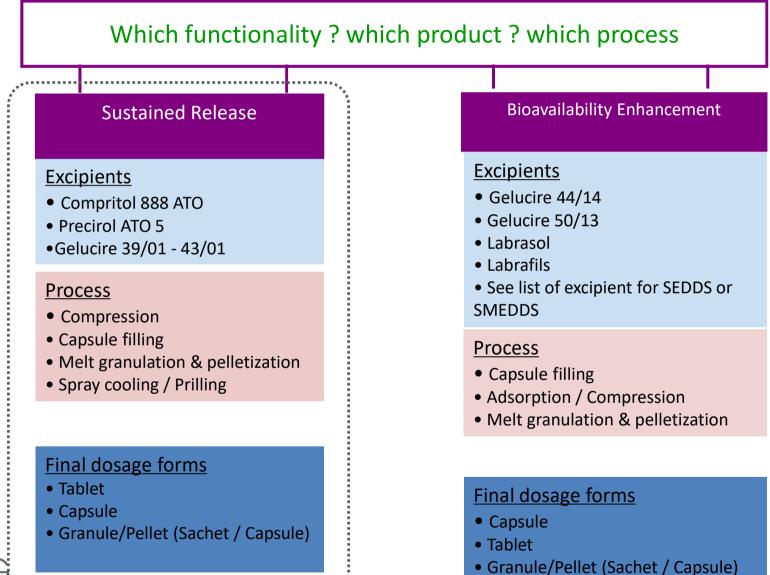
Polyalcohol esters

- Co-surfactant
- Solubility enhancers

More amphiphilic


- Solubilizer
- Surfactant

HLB



PHARMACEUTICAL SOLUTIONS

WHY SUSTAIN DRUG RELEASE?

- Reduced frequency (short half life drugs)
- Reduced side effects (no plasma concentration peaks)
- Improved efficacy (steady state)
- Improved patient compliance (intake once or twice a day)
- Extension of patent life (life cycle management)

9

APPROACHES TO SUSTAINED DRUG RELEASE

Film coating on drug loaded carriers

- Water soluble polymers e.g. PVA
- Water insoluble polymers e.g. EC
- pH-dependent polymers e.g. aminoethyl methacrylate copolymer

Drug embedded in a matrix

- Hydrophilic matrix e.g. HPMC
- Hydrophobic matrix e.g. EC
- Lipophilic matrix e.g. glyceryl dibehenate (Compritol 888 ATO)

APPROACHES TO SUSTAIN DRUG RELEASE

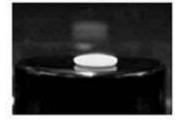
Structural matrix

- non-erodible
- non-swelling



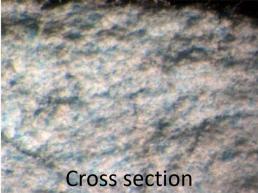
Swelling matrix

- swelling over time



Eroding matrix

- continuous surface erosion



COMPRITOL REPARTITION

Reproducible sustained release matrix systems rely on an infinite matrix network which entraps drug and prevents its immediate release*

WHY LIPIDIC MATRIX FOR SUSTAINED RELEASE?

No solvent needed to disperse the lipid

Drying step Organic vapor Risk of API hydrolysis

Atomized powder for *direct compression, wet granulation, etc.*

Drug release kinetics not influenced by pH changes

Avoid burst release effect

Bypass patents of hydrophilic SR matrix

PRESENTATION CONTENTS

- Introduction
- Compritol 888 ATO: Product overview
- Compritol 888 ATO: Product properties
- Formulating SR Tablets with Compritol 888: Gattefossé Strategy
- How to Modulate Release Profiles: Key Parameters
- Lipidic Matrix Performance
- Conclusion

PRODUCT OVERVIEW

Glyceryl behenate

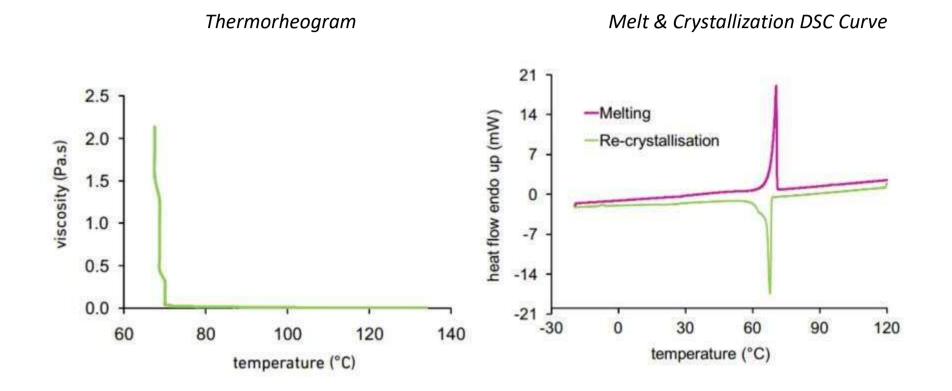
USP-NF/EP/ChPh GRAS, FDA IIG, acceptable non-medicinal ingredients (Canada)

MP = 70° C, HLB = 2

Atomized *spherical* particles D50 = $56.92 \pm 1.63 \mu m$ (n=69 batches)

Non-erodable matrix

Use level: 15 to 50%


PRECEDENCE OF USE

• More than 50 years of use in pharmaceutical tablets

Indication
Antifungal
Analgesic
Hypoglycemia
Hypoglycemia
Hypertension
Hypertension
Hypertension
Hypertension
Anti-inflammatory
Anti-inflammatory
Anti-epileptic
Anti-Parkinsons
Anti-Parkinsons

THERMAL CHARACTERISTICS

PRESENTATION CONTENTS

- Introduction
- Compritol 888 ATO: Product overview
- Compritol 888 ATO: Product properties
- Formulating SR Tablets with Compritol 888: Gattefossé Strategy
- How to Modulate Release Profiles: Key Parameters
- Lipidic Matrix Performance
- Conclusion

A MULTI-FUNCTIONAL EXCIPIENT

Lubricant

tablet compression

Taste masking

HMC, spray cooling, melt granulation

Sustained release

HMC, spray cooling, granulation, extrusion

Processing flexibility!

Compatible with other functional excipients

Compatible with APIs, HPMC, Carbomers, PVP, etc

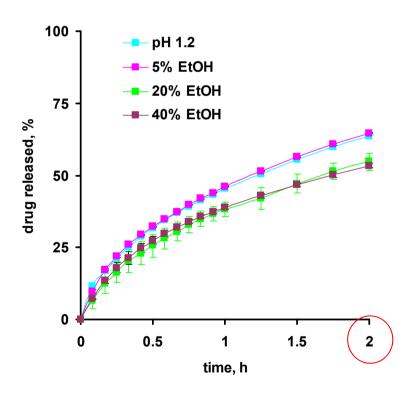
Compatible with all APIs

- Unlike e.g. HPMC in combination with reactive drugs (salts and acids) or excipients*
- Impact on long term stability/drug release kinetics

Taste masking attribute

masks the taste using melt processes

Reduced risk of dose dumping


- non-ionic, functionality un-affected by pH changes
- matrix does not dissolve in ethanol
- melt process increases matrix resistance

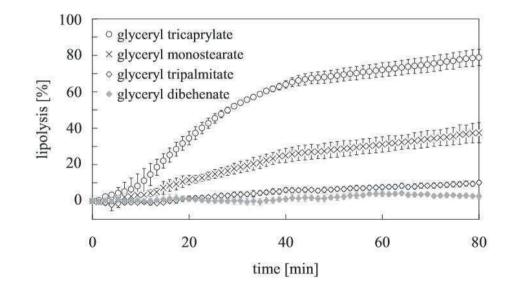
PH/ETHANOL INDEPENDENT

Draft Guidance on Bupropion Hydrochloride from FDA:

"Due to concerns of dose dumping from this drug product when taken with alcohol, please conduct additional dissolution testing using various concentrations of ethanol in the dissolution medium"

Ingredient	DC
	% w/w
Bupropion HCI	33.3
Compritol 888 ATO	30.3
DCPA	22.3
Lactose	11.1
Compritol 888 ATO	3

Dissolution studies in hydroalcoholic media are recommended by the FDA. Bupropion HCl lipid matrices **show no**


evidence of EtOH-associated dose dumping.

NON-DIGESTIBLE

Resistant to physiological conditions

- non-digestible by digestive enzymes present throughout the GI tract
- protects from physiological conditions and favours consistent drug release

PROCESSING FLEXIBILITY STRATEGY

Hydrophilic matrix

DC only, no WG unless with organic solvent

Hydrophobic matrix

DC only

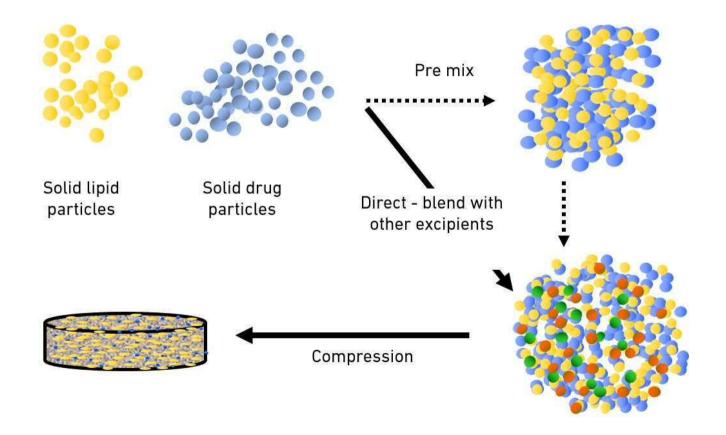
Lipophilic matrix

Direct compression Wet granulation Melt granulation Solid dispersion

drug, Compritol, diluent, lubricant DC + aqueous binder solution partial melting of Compritol drug dispersed in Compritol melt

Solvent-free Processes!

OTHER PROCESSES

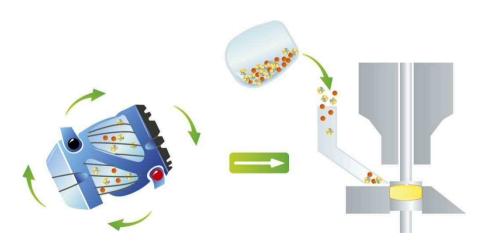

Spray cooling ✓ Hot melt coating ✓ Hot melt extrusion ✓ Solid lipid nanoparticles ✓

COLD PROCESS

Physical mixture

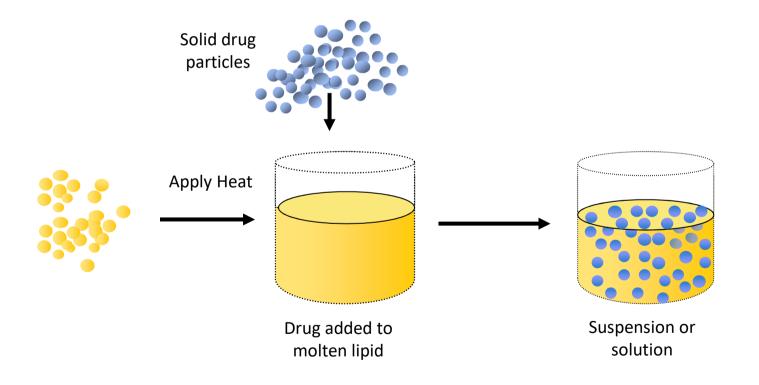
When both active and lipid excipient are solid powders, creation of a lipid barrier around the drug particle by blending and compression

DIRECT COMPRESSION



WET GRANULATION

Step 2 :



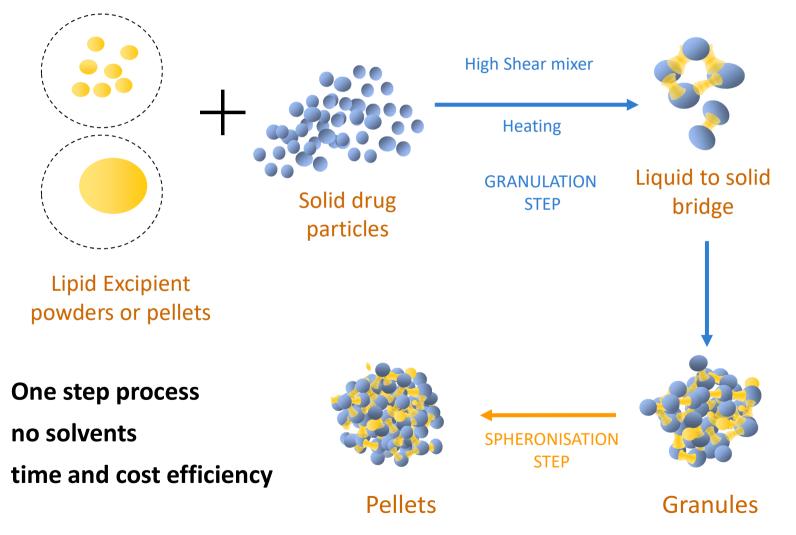
HOT PROCESS

Solid dispersion/solution

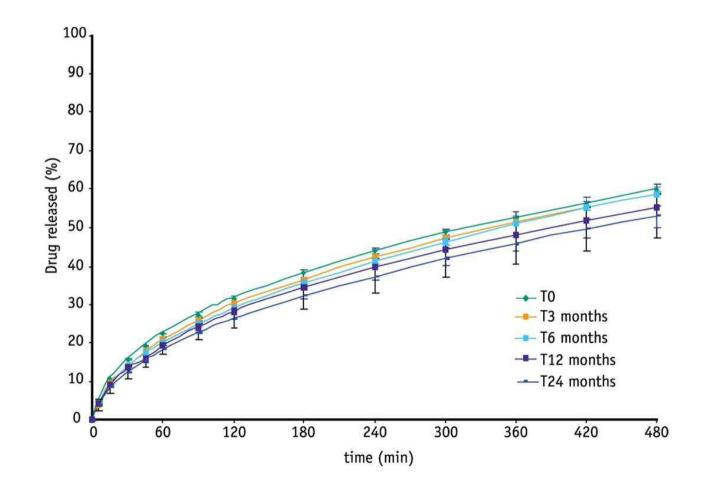
Dispersion/solution of the drug in the carrier *Heat is generally involved*

MELT & MIX METHOD

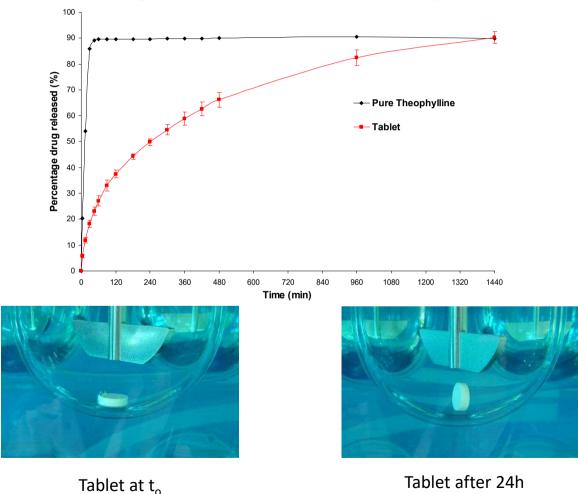
Melt granulation should be considered when API>C888


HOT MELT EXTRUSION

Extrusion can be done at T°C below lipid melting point i.e. 60°C NO limit in viscosity even when API<C888 Possibility to do melt granulation (AAPS poster 2012 from Justin Keen –Austin university TX)


Thermoplastic granulation

CASE STUDY # 1: SR THEOPHYLLINE TABLET


Theophylline dissolution profiles in pH 4.5 from tablets containing 15% theophylline / 15% Compritol 888 ATO / QS std excipients

CASE STUDY # 1: SR THEOPHYLLINE TABLET

Theophylline dissolution profiles in pH 4.5 from tablets containing 15% theophylline / 15% Compritol 888 ATO / QS std excipients

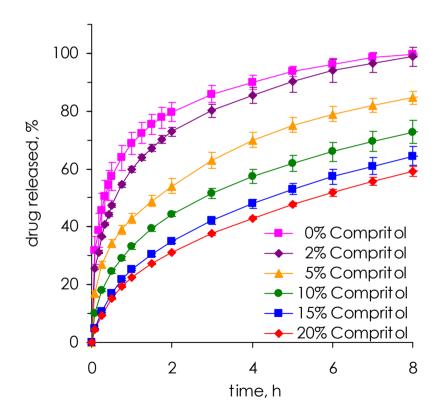
PRESENTATION CONTENTS

- Introduction
- Compritol 888 ATO: Product overview
- Compritol 888 ATO: Product properties
- Formulating SR Tablets with Compritol 888: Gattefossé Strategy
- How to Modulate Release Profiles: Key Parameters
- Lipidic Matrix Performance
- Conclusion

LIPID MATRIX SR TABLET COMPOSITION

DRUG	Active ingredient
MATRIX FORMER	Compritol 888 ATO
DILUENT	Tablet size, flow, compression
(co-excipients)	(lactose, MCC, DCPA)
LUBRICANT	Glidant, anti-adhesion, anti-friction
(0.5 – 3%)	(Compritol 888 ATO, talc, Mg stearate)

Several **parameters** impacting dissolution/release profile:


- Amount of SR matrix (drug vs. SR matrix ratio)
- Amount and nature of **diluents** selected
- Tablet **size** (*diffusion path-length*)
- **Processing** route (*cold vs hot*)

IMPACT OF COMPRITOL AMOUNT

Theophylline release of matrix tablets prepared by direct compression.

900mL phosphate buffer pH 4.5, 75 rpm, 37°C

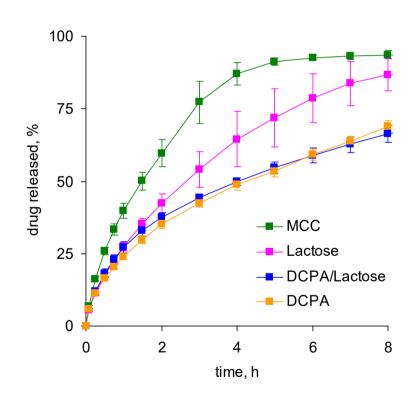
	0% C888	\Rightarrow	20% C888
Ingredient	% w/w		% w/w
Theophylline	16.7		16.7
Compritol 888 ATO	0		20
DCPA	52.9		39.5
Lactose	26.4		19.8
Mg Al metasilicate	3		3
Mg Stearate	1		1

INCREASE Compritol content
DECREASE drug release
= easy to modulate

CHOICE OF DILUENTS

- Lactose ⇒ water soluble, good compressibility and flowability, low hygroscopicity, physicochemical stable, cost effective
- **MCC** \Rightarrow water insoluble, disintegration properties (swelling), compressible, rather good flowability
- **DCPA** \implies water insoluble, slightly alkaline (pH 7 7.4), good compressibility and flowability, sticking to the die

Sucrose, starch, mannitol, ethylcellulose, HPC ...


Modulation also provided by combining various diluents

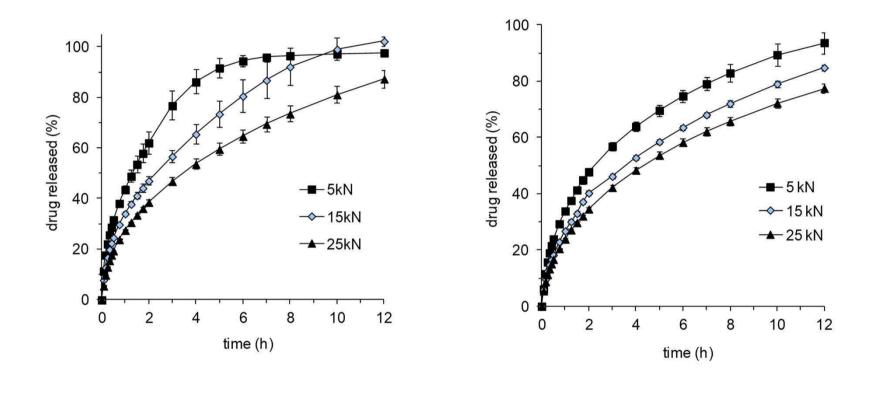
IMPACT OF DILUENTS

Theophylline release of matrix tablets (600mg) prepared by direct compression.

900mL phosphate buffer pH 4.5, 75 rpm, 37°C

Ingredient		%	w/w	
Theophylline	16.7	16.7	16.7	16.7
Compritol 888 ATO	15	15	15	15
DCPA	42.9	64.3		
Lactose	21.4		64.3	
MCC PH101				64.3
Neusilin	3	3	3	3
Mg Stearate	1	1	1	1

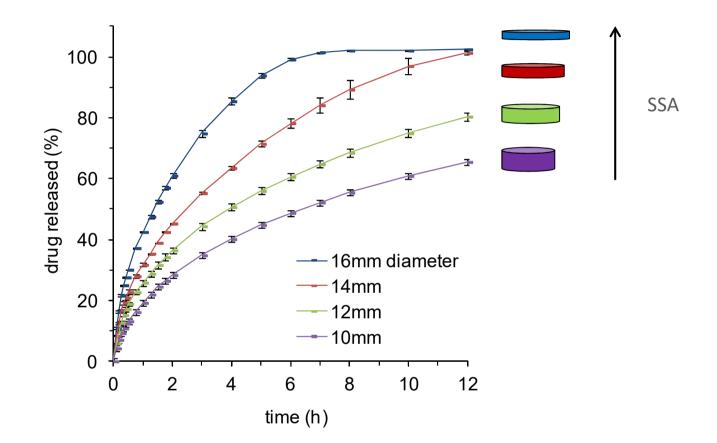
The nature (and the amount) of diluent plays an important role in the modulation of release rate.


IMPACT OF COMPRESSION FORCES

Ingredients	%
Theophylline	20
C888 ATO	15
Fujicalin SG	32.25
Tablettose 80	32.25
Mg stearate	0.5

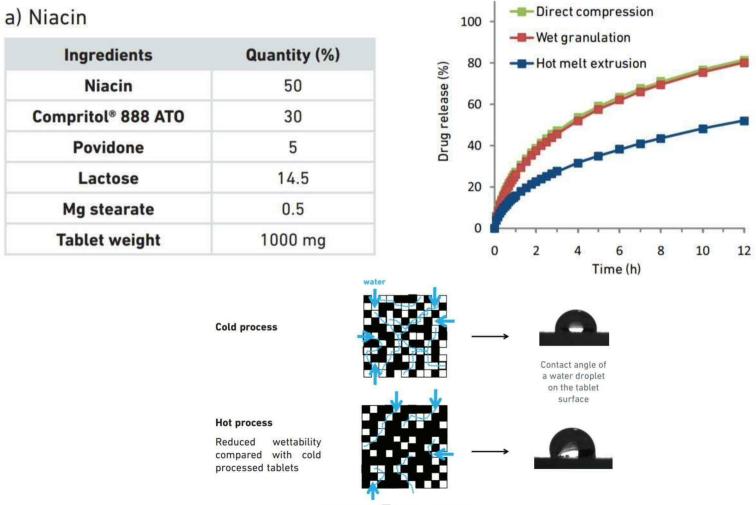
Run #	Compression force (kN)	Pre-compression force (kN)	Compression speed (rpm)	Feed rate
Run 1	5.0	1.0	30.0	6.0
Run 4	25.0	1.0	30.0	6.0
Run 5	15.0	1.0	30.0	6.0

IMPACT OF COMPRESSION FORCES



14mm tablets

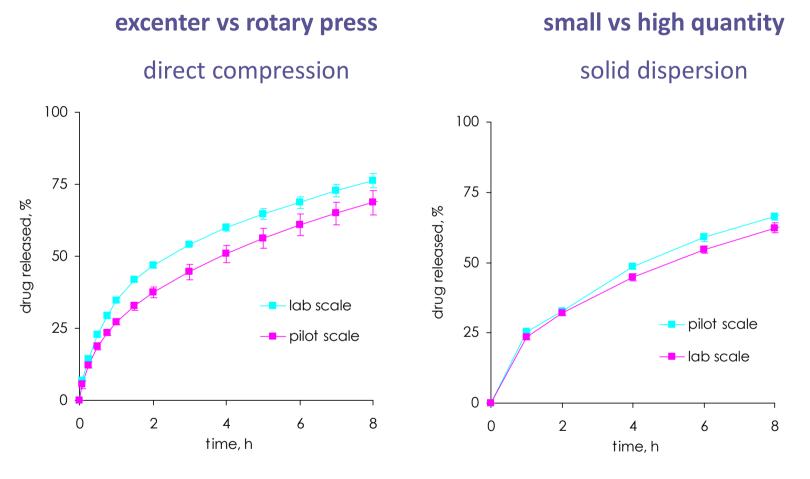
12mm tablets


IMPACT OF TABLET SIZE

The tablet dimension can be an appropriate tool to adjust drug release kinetics

IMPACT OF PROCESSING ROUTE

Watersoluble 🔲 🔳 Compritol®888

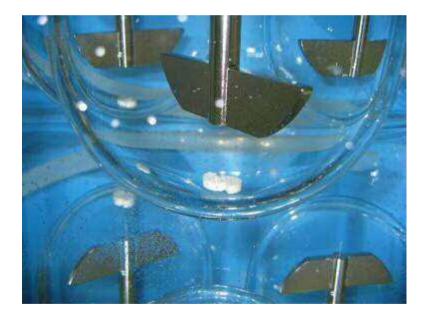


PRESENTATION CONTENTS

- Introduction
- Compritol 888 ATO: Product overview
- Compritol 888 ATO: Product properties
- Formulating SR Tablets with Compritol 888: Gattefossé Strategy
- How to Modulate Release Profiles: Key Parameters
- Lipidic Matrix Performance
- Conclusion

TRANSFERABILITY: SCALE-UP

Theophylline

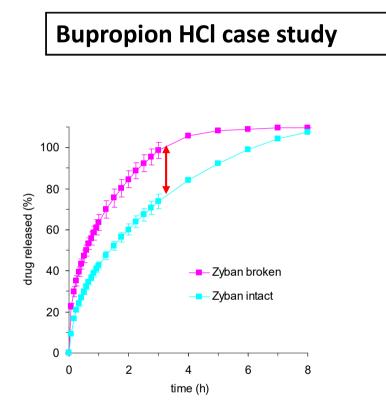

Metoprolol succinate

MIS-HANDLING: BUPROPION HCL

Splitting or damage to an SR tablet may affect the drug release profile leading adverse effects

Compritol matrix

Zyban LP 150mg

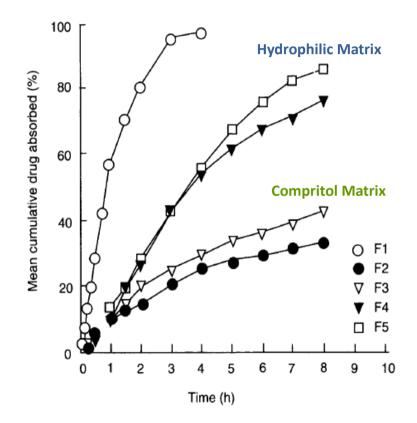


Product label Wellbutrin[®] SR/XL (bupropion HCl) states that tablets should be taken whole and that splitting could lead to adverse effects. Wellbutrin[®] is registered trademark of GlaxoSmithKline Ltd.

Zyban[®] is registered trademark of GlaxoSmithKline Ltd.

MIS-HANDLING: BUPROPION HCL

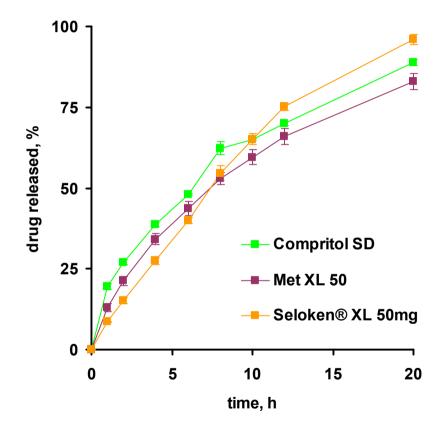
Zyban® is registered trademark of GlaxoSmithKline Ltd.


		Ingredient	DC % w/w
		Bupropion HCI	33.3
		Compritol 888 ATO	30.3
		Cystein HCI	2
		DCPA	20.9
		Lactose	10.5
		Compritol 888 ATO	3
		Total weight	450mg
drug released (%)	100 80 60 40	- broken C	Compritol matrix
σ		- 📕 — intact Co	ompritol matrix
	20	F	
	0	0 2 4	6 8
		time (h)	

Compritol matrix = SR unaffected

no accidental dose dumping if tablet is broken

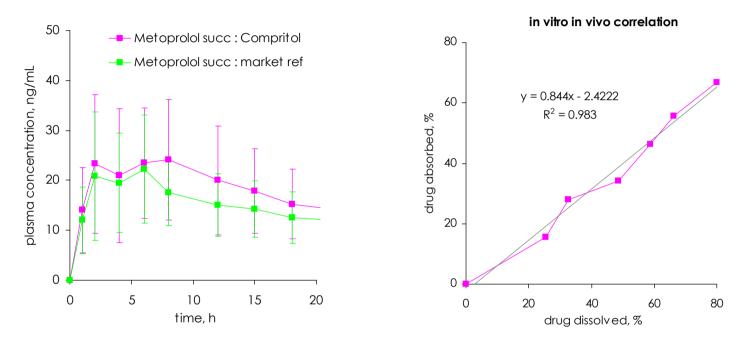
IN-VIVO EFFICACY - THEOPHYLLINE


Ingredients %w/w	F1	F2	F3	F4	F5
Theophylline	50	50	50	50	50
Compritol 888		30	30		
Carbomer				30	
НРМС					30
Spray-dried lactose		20		20	
DCPA	50		20		
MCC					20
Totals	100	100	100	100	100

Tablet weight 200 mg made by direct compression

Mean cumulative theophylline absorbed in 8 beagle dogs

MARKET REFERENCE COMPARISON



In vitro metoprolol succinate release from lipid matrix closely matches market references

Tablet Ingredients	% w/w	mg
Metoprolol succinate	28.55	50
Compritol 888 ATO	57.11	100
MCC PH-101	11.42	20
Magnesium stearate	1.94	3.4
Aerosil	0.97	1.7
Total weight (mg)	100	175.1

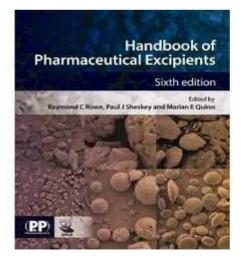
In vivo study in 12 healthy men

- 1- The plasma concentration time profile of Compritol tablet and MetXL50 is comparable
- 2- The R² values in the IVIVC indicates excellent correlation

Poster : Controlled Release Society Annual Meeting 2011: **Compritol® 888ATO a release modifier for sustained release of highly water soluble agent: Formulation, Evaluation and IVIVC study. M. S. Nagarsenker et al.**

PRESENTATION CONTENTS

- Introduction
- Compritol 888 ATO: Product overview
- Compritol 888 ATO: Product properties
- Formulating SR Tablets with Compritol 888: Gattefossé Strategy
- How to Modulate Release Profiles: Key Parameters
- Lipidic Matrix Performance
- Conclusion


COMPRITOL 888 ATO

Performance & flexibility

Compatible with all Flexible processing routes Flexible release profile tailoring No organic solvent pH- and ethanol-independent

Pharmacopoeia, GRAS Well characterized

Global regulatory acceptability

Patent opportunities

GLYCERYL BEHENATE IN APPROVED DOSAGE FORMS

Active ingredient	Matrix / drug delivery technology system
Ropinirole	Multilayed / controlled release DDT
Prednisone	Multi-layer / core timed release DDT
Tilidine	Matrix tablet
Theophylline	Matrix tablet
Paroxetine	Matrix tablet
Metformin HCL	Matrix tablet
Nisoldipine	Multilayed / controlled release DDT
Zileuton	Multilayed / controlled release DDT
Valproic acid	Microgranules
Nicotinic acid	Matrix tablet
Azithromicine	Coated microgranules / suspension
Ibuprofen	Matrix tablet
Guanfacine HCl	Matrix tablet

CASE STUDIES AVAILABLE

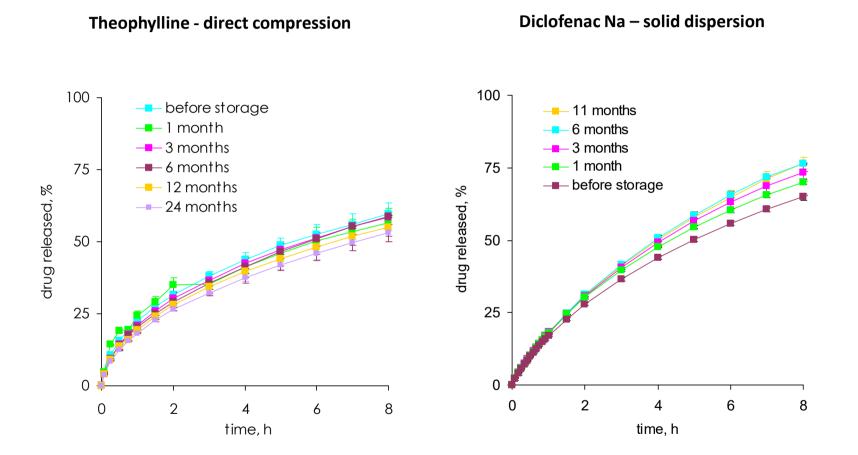
Investigated drugs

Preparation techniques

Performance & troubleshooting

- Metoprolol succinate
- Metformin HCl
- Theophylline
- Buproprion HCl
- Diclofenac sodium
- Ketoprofen
- Niacin
- Felodipine
- direct compression (DC)
- wet granulation (WG)
- solid dispersion (SD)
- melt extrusion (HME)
- in vitro-in vivo correlation
- curing
- long term storage
- pH-/ethanol robustness
- other case studies

LIPID MATRIX: A SMART STRATEGY


Thank you!

APPENDIX

STORAGE STABILITY

Tablets stored in ICH conditions: 25°C, 60% relative humidity

