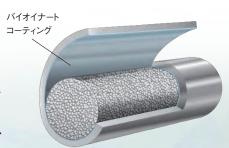


Accura Triart / BioPro IEX

核酸、抗体、タンパク質などの 吸着性成分や配位性成分の分析に有効



逆相·HILIC

Accura Triart

イオン交換

Accura BioPro IEX

核酸、抗体、タンパク質などの吸着性成分や配位性成分の分析に有効

特長

- ●カラムハードウェアの接液部をバイオイナートコーティング処理
- ●低吸着・低キャリーオーバーでLC-MSでの高感度分析が可能
- ●優れたピーク形状
- ●プレコンディショニング不要

【逆相·HILIC】 Accura Triart

有機シリカハイブリッド基材で卓越した耐久性を有するYMC-Triartを充填

		Triart C18	Triart C18 ExRS	Triart C8	Triart Phenyl	Triart PFP	Triart Bio C18	Triart Bio C4	Triart Diol-HILIC
官能基		C18	C18 (高官能基密度型)	C8	Phenylbutyl	Pentafluoro phenylpropyl	C18	C4	Dihydroxypropyl
分離モード				逆相				HILIC	
粒子径(μm)					1.9,	3, 5			
細孔径 (nm) 12 8 12		3	0	12					
使用pH範	囲		1-12		1-10	1-8	1-12	1-10	2-10
使用	常用				20-	40℃			
温度範囲	上限温度		pH 1-7∶90°C pH 7-12∶50°C		50	°C	pH 1-9:90℃ pH 9-12:50℃	pH 1-7:90℃ pH 7-10:50℃	50°C
特長・用途		ファーストチョイスに 最適	低極性の構造異性体・ 類縁体の分離に有効	低極性化合物の 短時間分析に有効	共役系が長い 化合物の分離に有効	極性化合物・異性体の 分離に有効	ペプチド・タンパ 生体分子の	ク質、核酸などの 分離に有効	高極性化合物の 保持・分離に有効

【イオン交換】Accura BioPro IEX

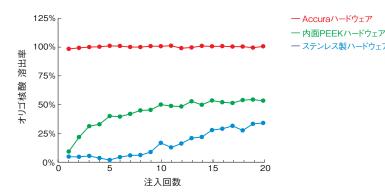
非特異的吸着が極めて小さいBioPro IEXを充填

	強アニオン交換 BioPro IEX QF	強カチオン交換 BioPro IEX SF
基材	親水性ノンポ	ーラスポリマー
粒子径 (μm)	3, 5	
イオン交換基	-CH2N ⁺ (CH3)3	-CH2CH2CH2SO3 ⁻
使用pH範囲	2-	12

Accura Triart

カラムハードウェアへの吸着を低減

8 mM TEA*-200 mM HFIP**/methanol (82/18)


*triethylamine **1,1,1,3,3,3-hexafluoro-2-propanol 125% 100% 75% 50%

10

注入回数

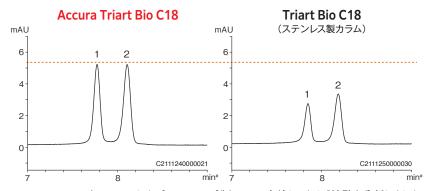
100 mM TEAA*/methanol (82/18)

*triethylammonium acetate

Sample:

25%

オリゴ核酸 溶出率


5'-U^C^A^U^C^A^C^A^C^U^G^A^A^U^A^C^C^A^A^U-3' (RNA 20mer All PS)

^=Phosphorothioated

Column 50 X 2.1 mml.D. : 0.42 mL/min Flow rate Temperature: 65°C : UV at 260 nm

Accura、内面PEEK、およびステンレス製のカラムハードウェアのみ(充填剤なし)を接続し、吸着 しやすいオリゴ核酸の溶出率を比較しました。ステンレス製ハードウェアでは初期注入時に吸着が 大きく、連続注入することで改善しますが、20回注入してもAccuraハードウェアよりも溶出率が低 くなっています。内面PEEKのハードウェアは、条件によっては吸着して感度が低くなる場合があり ます。Accuraハードウェアでは、条件によらず初回注入時から吸着することなく溶出しており、安定 して良好な感度、回収率が得られます。

低吸着・高感度分析を実現

20

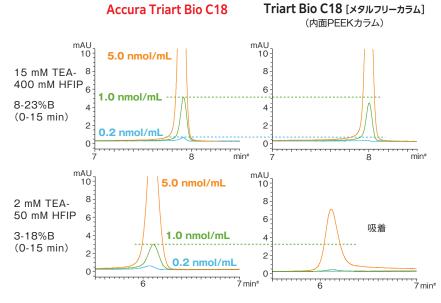
オリゴ核酸

1. 5' -U^C^A^U^C^A^C^A^C^U^G^A^A^U^A^C^C^A^A^U-3' (RNA 20mer All PS)

- ステンレス製ハードウェア

- 2. 5' -G^U^C^A^U^C^A^C^A^C^U^G^A^A^U^A^C^C^A^A^U-3' (RNA 21mer All PS)
- ^=Phosphorothioated

Triart Bio C18 (1.9 μ m, 30 nm), 50 X 2.1 mml.D. A) 15 mM TEA-400 mM HFIP Column


Eluent

B) methanol 8-18%B (0-10 min) 0.42 mL/min

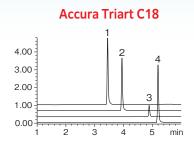
Flow rate Temperature: 65°C : UV at 260 nm Detection

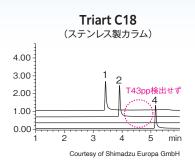
Triart Bio C18をAccuraおよびステンレス製カラムに充填し、オリゴ核酸を分析しました。Accuraではステンレス製カラムに比べ吸着が抑制されて ピーク高さが高く、高感度で検出可能です。

移動相条件によらず良好なピーク形状

: Triart Bio C18 (1.9 $\mu \text{m}, \, 30$ nm), 50 X 2.1 mml.D. : A) 15 mM TEA-400 mM HFIP Column Eluent

or 2 mM TEA-50 mM HEIP


B) methanol 0.42 mL/min


Temperature 65°C Detection UV at 260 nm Injection 1 1/1 : RNA 20mer All PS Sample

Flow rate

Triart Bio C18を充填したAccuraおよび内面PEEKカ ラムで、オリゴ核酸の負荷量を変えてピーク形状を比較し ています。内面PEEKカラムは、移動相のTEA-HFIPの 濃度が高い場合にはシャープなピーク形状が得られてい ますが、濃度が低い場合にはピークがブロードで高さが小 さく、著しい吸着が認められます。Accuraは移動相条件 によらずシャープなピーク形状を示し、LC-MSで用いられ るような低濃度のTEA-HFIP移動相条件においても高 感度で検出できます。

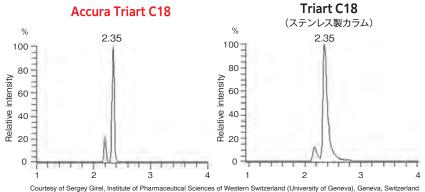
リン酸化ペプチドの分析

リン酸化ペプチドのLC-MS分析において、ステンレス製カラムでは吸着が認められ、 特にリン酸基を二つ有するT43ppは検出することが困難ですが、Accuraではすべて のピークが高感度で検出できています。

リン酸化ペプチド

HLADLpSK 1. T19p (m/z 432.2)2. T18p NVPLpYK (m/z 407.2)VNQIGTLpSEpSIK (m/z 724.8) 3. T43pp VNQIGpTLSESIK (m/z 684.8)4. T43p

Triart C18 (1.9 µm, 12 nm), 100 X 2.1 mml.D. A) water/formic acid (100/0.1) B) acetonitrile/formic acid (100/0.1) 0.7-25%B (0-5 min), 25%B (5-6.6 min), 0.7%B (6.6-8 min) Column Eluent


0.6 mL/min 60°C Flow rate Temperature Detection

ESI-MS 2 μ L (10 pmol/ μ L) Injection

Massprep Phosphopeptide Standard Enolase (Waters) Shimadzu Nexera XS inert Sample System

Shimadzu LCMS-2020

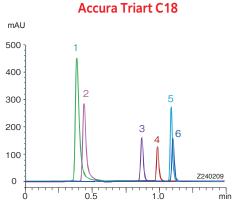
リン脂質の分析

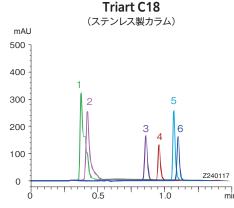
Lysophosphatidylcholine (LPC) LPC (16:0) (m/z 496.3398)

リン脂質をLC-MSで分析したクロマトグラムを示します。ステンレス製の カラムではピークがブロードで、テイリング傾向ですが、Accuraではシャー プなピーク形状が得られています。

: Triart C18 (1.9 μ m, 12 nm), 100 X 2.1 mml.D. Column Eluent

B) 10 mM HC00NH₄/acetonitrile/formic acid (40/60/0.1)
B) 10 mM HC00NH₄ in 2-propanol/acetonitrile/formic acid (90/10/0.1)


20-55%B (0-3.5 min), 55-95%B (3.5-15 min), 95%B (15-17 min)


0.4 mL/min Flow rate 50°C Temperature:

Detection Sample ESI positive mode 100 μ L pooled human plasma precipitated with 2-propanol

(Sample-to-solvent ratio 1:6; reconstituted with 100 μ L of 2-propanol) Orbitrap Q Exactive Focus (Thermo Fisher Scientific) System

配位性化合物(トリプトファン代謝物)の分析

- 1. Quinolinic asid
- 2. Picolinic acid
- 3. Kynurenine
- 4. Xanthurenic acid
- 5. Kynurenic acid
- 6. Tryptophan

: Triart C18 (1.9 µm, 12 nm), Column 50 X 2.1 mml.D : A) 10 mM HCOONH₄-HCOOH

Eluent

(pH 3.7) B) acetonitrile

5–50%B (0–3 min) 0.4 mL/min

Flow rate Temperature 40°C Detection : UV at 254 nm

トリプトファン代謝物の分析において、Accura Triart C18ではキノリン酸などの金属配位性化合物もシャープなピーク形状が得られ、高感度分析が可能です。

■ オーダリングインフォメーション

分析カラム

粒子径	カラムサイズ	製品番号					(T. In (TT)
(μm)	内径X長さ(mm)	Triart C18	Triart C18 ExRS	Triart C8	Triart Phenyl	Triart PFP	価格(円)
1.9	2.1 X 50	TA12SP9-05Q1PTC	TAR08SP9-05Q1PTC	TO12SP9-05Q1PTC	TPH12SP9-05Q1PTC	TPF12SP9-05Q1PTC	104,000
	2.1 X 100	TA12SP9-10Q1PTC	TAR08SP9-10Q1PTC	TO12SP9-10Q1PTC	TPH12SP9-10Q1PTC	TPF12SP9-10Q1PTC	110,000
	2.1 X 150	TA12SP9-15Q1PTC	TAR08SP9-15Q1PTC	TO12SP9-15Q1PTC	TPH12SP9-15Q1PTC	TPF12SP9-15Q1PTC	110,000
3	2.1 X 50	TA12S03-05Q1PTC	TAR08S03-05Q1PTC	TO12S03-05Q1PTC	TPH12S03-05Q1PTC	TPF12S03-05Q1PTC	99,000
	2.1 X 100	TA12S03-10Q1PTC	TAR08S03-10Q1PTC	TO12S03-10Q1PTC	TPH12S03-10Q1PTC	TPF12S03-10Q1PTC	105,000
	2.1 X 150	TA12S03-15Q1PTC	TAR08S03-15Q1PTC	TO12S03-15Q1PTC	TPH12S03-15Q1PTC	TPF12S03-15Q1PTC	105,000
	4.6 X 50	TA12S03-0546PTC	TAR08S03-0546PTC	TO12S03-0546PTC	TPH12S03-0546PTC	TPF12S03-0546PTC	99,000
	4.6 X 100	TA12S03-1046PTC	TAR08S03-1046PTC	TO12S03-1046PTC	TPH12S03-1046PTC	TPF12S03-1046PTC	105,000
	4.6 X 150	TA12S03-1546PTC	TAR08S03-1546PTC	TO12S03-1546PTC	TPH12S03-1546PTC	TPF12S03-1546PTC	105,000
5	2.1 X 50	TA12S05-05Q1PTC	TAR08S05-05Q1PTC	TO12S05-05Q1PTC	TPH12S05-05Q1PTC	TPF12S05-05Q1PTC	94,000
	2.1 X 100	TA12S05-10Q1PTC	TAR08S05-10Q1PTC	TO12S05-10Q1PTC	TPH12S05-10Q1PTC	TPF12S05-10Q1PTC	100,000
	2.1 X 150	TA12S05-15Q1PTC	TAR08S05-15Q1PTC	TO12S05-15Q1PTC	TPH12S05-15Q1PTC	TPF12S05-15Q1PTC	100,000
	4.6 X 50	TA12S05-0546PTC	TAR08S05-0546PTC	TO12S05-0546PTC	TPH12S05-0546PTC	TPF12S05-0546PTC	94,000
	4.6 X 100	TA12S05-1046PTC	TAR08S05-1046PTC	TO12S05-1046PTC	TPH12S05-1046PTC	TPF12S05-1046PTC	100,000
	4.6 X 150	TA12S05-1546PTC	TAR08S05-1546PTC	TO12S05-1546PTC	TPH12S05-1546PTC	TPF12S05-1546PTC	100,000

粒子径	カラムサイズ	製品		
(μm)	内径X長さ(mm)	Triart Bio C18	Triart Bio C4	価格(円)
1.9	2.1 X 50	TA30SP9-05Q1PTC	TB30SP9-05Q1PTC	114,000
	2.1 X 100	TA30SP9-10Q1PTC	TB30SP9-10Q1PTC	120,000
	2.1 X 150	TA30SP9-15Q1PTC	TB30SP9-15Q1PTC	120,000
3	2.1 X 50	TA30S03-05Q1PTC	TB30S03-05Q1PTC	109,000
	2.1 X 100	TA30S03-10Q1PTC	TB30S03-10Q1PTC	115,000
	2.1 X 150	TA30S03-15Q1PTC	TB30S03-15Q1PTC	115,000
	4.6 X 50	TA30S03-0546PTC	TB30S03-0546PTC	109,000
	4.6 X 100	TA30S03-1046PTC	TB30S03-1046PTC	115,000
	4.6 X 150	TA30S03-1546PTC	TB30S03-1546PTC	115,000
5	2.1 X 50	TA30S05-05Q1PTC	TB30S05-05Q1PTC	104,000
	2.1 X 100	TA30S05-10Q1PTC	TB30S05-10Q1PTC	110,000
	2.1 X 150	TA30S05-15Q1PTC	TB30S05-15Q1PTC	110,000
	4.6 X 50	TA30S05-0546PTC	TB30S05-0546PTC	104,000
	4.6 X 100	TA30S05-1046PTC	TB30S05-1046PTC	110,000
	4.6 X 150	TA30S05-1546PTC	TB30S05-1546PTC	110,000

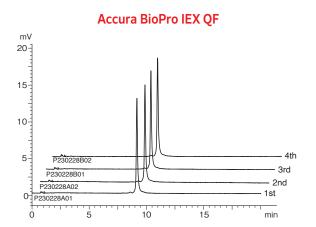
粒子径	カラムサイズ	製品番号	(##z/EI)
(µm)	内径X長さ(mm)	Triart Diol-HILIC	価格(円)
1.9	2.1 X 50	TDH12SP9-05Q1PTC	104,000
	2.1 X 100	TDH12SP9-10Q1PTC	110,000
	2.1 X 150	TDH12SP9-15Q1PTC	110,000
3	2.1 X 50	TDH12S03-05Q1PTC	99,000
	2.1 X 100	TDH12S03-10Q1PTC	105,000
	2.1 X 150	TDH12S03-15Q1PTC	105,000
	4.6 X 50	TDH12S03-0546PTC	99,000
	4.6 X 100	TDH12S03-1046PTC	105,000
	4.6 X 150	TDH12S03-1546PTC	105,000
5	2.1 X 50	TDH12S05-05Q1PTC	94,000
	2.1 X 100	TDH12S05-10Q1PTC	100,000
	2.1 X 150	TDH12S05-15Q1PTC	100,000
	4.6 X 50	TDH12S05-0546PTC	94,000
	4.6 X 100	TDH12S05-1046PTC	100,000
	4.6 X 150	TDH12S05-1546PTC	100,000

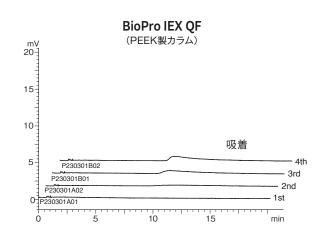
EXP®ガードカートリッジカラム

粒子径	カラムサイズ			製品番号			(T) (T)
(μm)	内径X長さ(mm)	Triart C18	Triart C18 ExRS	Triart C8	Triart Phenyl	Triart PFP	価格(円)
1.9	2.1 X 5	TA12SP9-E5Q1GCC	TAR08SP9-E5Q1GCC	TO12SP9-E5Q1GCC	TPH12SP9-E5Q1GCC	TPF12SP9-E5Q1GCC	50,000
3	2.1 X 5	TA12S03-E5Q1GCC	TAR08S03-E5Q1GCC	TO12S03-E5Q1GCC	TPH12S03-E5Q1GCC	TPF12S03-E5Q1GCC	45,000
	4.6 X 5	TA12S03-E546GCC	TAR08S03-E546GCC	TO12S03-E546GCC	TPH12S03-E546GCC	TPF12S03-E546GCC	45,000
5	2.1 X 5	TA12S05-E5Q1GCC	TAR08S05-E5Q1GCC	TO12S05-E5Q1GCC	TPH12S05-E5Q1GCC	TPF12S05-E5Q1GCC	45,000
	4.6 X 5	TA12S05-E546GCC	TAR08S05-E546GCC	TO12S05-E546GCC	TPH12S05-E546GCC	TPF12S05-E546GCC	45,000

粒子径	カラムサイズ	製品	番号	
(μm)	内径X長さ(mm)	Triart Bio C18	Triart Bio C4	価格(円)
1.9	2.1 X 5	TA30SP9-E5Q1GCC	TB30SP9-E5Q1GCC	50,000
3	2.1 X 5	TA30S03-E5Q1GCC	TB30S03-E5Q1GCC	45,000
	4.6 X 5	TA30S03-E546GCC	TB30S03-E546GCC	45,000
5	2.1 X 5	TA30S05-E5Q1GCC	TB30S05-E5Q1GCC	45,000
	4.6 X 5	TA30S05-E546GCC	TB30S05-E546GCC	45,000

粒子径	カラムサイズ	製品番号	価格(円)	
(µm)	内径X長さ(mm)	Triart Diol-HILIC		
1.9	2.1 X 5	TDH12SP9-E5Q1GCC	50,000	
3	2.1 X 5	TDH12S03-E5Q1GCC	45,000	
	4.6 X 5	TDH12S03-E546GCC	45,000	
5	2.1 X 5	TDH12S05-E5Q1GCC	45,000	
	4.6 X 5	TDH12S05-E546GCC	45,000	


初めてご使用になる際は、EXP®ダイレクトコネクトホルダー(製品番号 XPCHUHP)をお買い求めください。


カートリッジホルダー

製品名/仕様	製品番号	価格(円)
EXP®ダイレクトコネクトホルダー(内径2.1, 3.0, 4.6 mm共通、チタニウムハイブリッドフェラル2個・ナット1個付き)	XPCHUHP	65,000

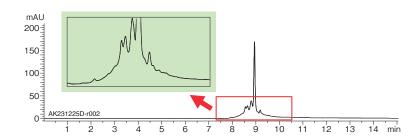
Accura BioPro IEX

プレコンディショニング不要で良好な再現性

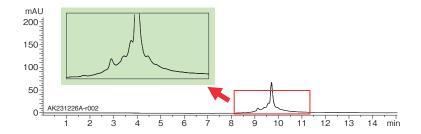
: 5 µm. 100 X 4.6 mml.D. Column Eluent

A) 20 mM Tris-HCI (pH 8.1) B) 20 mM Tris-HCI (pH 8.1) containing 1.0 M NaCIO₄ 25-40%B (0-15 min), 40%B (15-20 min)

Flow rate 1.0 mL/min Temperature: 60°C


UV at 260 nm 4 μL (5 nmol/mL) Injection 21mer RNA

カラムハードウェア素材の異なる同一担体のカラムで、オリゴ核酸を分析しました。 PEEK製カラムでは吸着が認められますが、Accuraでは初回注入時から安定したピー ク面積で良好なピーク形状が得られています。


Accura BioPro IEXは、吸着しやすい核酸についても、プレコンディショニングを行わ ずに分析可能です。

優れたピーク形状

Accura BioPro IEX SF $3 \mu m$, 100 X 4.6 mml.D.

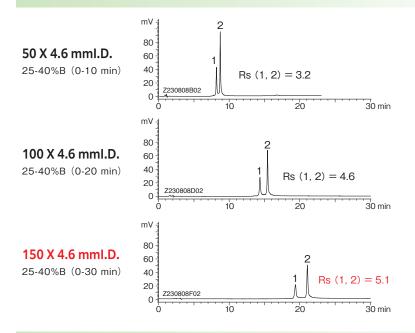
市販強カチオン交換カラム $3 \mu m$, 100 X 4.0 mml.D.

Eluent A) 10 mM MES-NaOH (pH 6.6)

: B) 10 mM MES-NaOH (pH 6.6) containing 1.0 M NaCI 0-20%B (0-15 min) : 0.5 mL/min for 4.6 mml.D.,

0.378 mL/min for 4.0 mml.D. Temperature: 25°C

Flow rate


Detection Sample UV at 280 nm Bevacizumab

Accura BioPro IEX SFと市販カラムについて、同一条件でモノクローナル抗体の分 離を比較しました。

Accura BioPro IEX SFは市販カラムに比べてピーク形状がシャープで、チャージバリ アントと考えられるピークの分離も良好です。

微量分析や高分離分析に有効な各種サイズをラインナップ

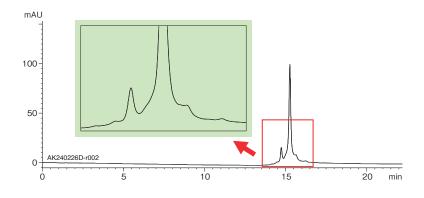
ロングカラムで高分離分析に有効

- 1. antisense strand
- 2. siRNA duplex

Column

: Accura BioPro IEX QF (5 μm) : A) 20 mM Tris-HCl (pH 8.1) B) 20 mM Tris-HCl (pH 8.1) containing 1.0 M NaClO₄

0.5 mL/min 60°C Temperature : UV at 260 nm 8 μL (each 5 nmol/mL) Detection Injection


一本鎖RNA (アンチセンス鎖)と二本鎖RNA (siRNA)を、 カラム長の異なるAccura BioPro IEX QFで分析しました。 核酸の分離においては、イオン交換モードでもカラム長が長

150 mm長で最も分離度が大きくなりました。

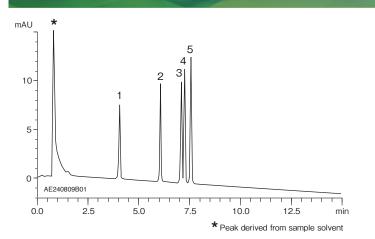
Accura BioPro IEXは、150 mm長や250 mm長のカラム もラインナップしており、高分離分析に有用です。

いほうが分離が良好になる場合があり、この例においても

2.1 mm内径で微量分析も可能

Accura BioPro IEX SF (3 μ m), 100 X 2.1 mml.D. A) 20 mM CH₃COONH₄-CH₃COOH (pH 5.6) B) 140 mM CH₃COONH₄-10 mM NH₄HCO₃ (pH 7.4) Column

20%B (0-2 min), 20-100%B (2-18 min), 100%B (18-22 min)


Flow rate 0.1 mL/min

Temperature 25℃ UV at 280 nm Detection

2 μL (1 mg/mL) Trastuzumab Injection Sample

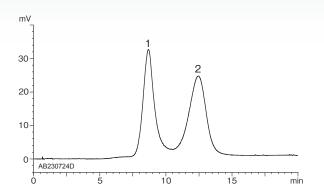
モノクローナル抗体をAccura BioPro IEX SFで分析しました。 Accura BioPro IEXは2.1 mm内径もラインナップしている ため、微量の試料やLC-MSでの分析に有用です。

長鎖核酸の分離

- 1. 100 bp
- 2 400 hp 3. 850 bp
- 4. 2000 bp
- 5. 5000 bp

Column : Accura BioPro IEX QF (5 μm) Eluent

Accura BioPro Lex QF (8 µm) 100 X 4.6 mml.D. A) 20 mM Tris-HCl (pH 8.5) B) 20 mM Tris-HCl (pH 8.5) containing 2.0 M NaCl 35-50%B (0-15 min) 1.0 mL/min


Flow rate Temperature : 25°C Detection : UV a

: UV at 260 nm Injection

10 μL (4 μg/mL) FastRuler™ Middle Range DNA Ladder, ready-to-use (Thermo Fisher Scientific) Sample

100~5000 bpのDNAをAccura BioPro IEX QFで分析しました。1000 bpを超える長鎖核酸も、シャープなピーク形状で良好な分離が得られています。

アデノ随伴ウイルス(AAV)の分離

- 1. Empty Capsid
- 2. Full Capsid

Eluent

: Accura BioPro IEX QF (5 µm), 50 X 4.6 mml.D. : A) 20 mM Bis-tris propane-HCl (pH 9.0) B) 20 mM Bis-tris propane-HCl containing 0.5 M TMAC* (pH 9.0) 5%B (0-0.25 min), 20-45%B (0.25-15.25 min)

Flow rate : 0.5 mL/min Temperature : 25°C

: 25 C : FLS at Ex. 280 nm, Em. 348 nm : 2 µL (5.18 X 10⁹ vg) : AAV2 Detection

Injection

Sample

*tetramethylammonium chloride

AAVのフルカプシドとエンプティカプシドを、Accura BioPro IEX QF で 分析しました。溶出塩に塩化テトラメチルアンモニウムを使用することで 良好な分離ができています。

This research was supported by AMED under Grant Number JP18ae0201001.

オーダリングインフォメーション

分析カラム

粒子径	カラムサイズ	製品	/= / F / == \	
(μm)	内径X長さ(mm)	BioPro IEX QF	BioPro IEX SF	価格(円)
3	2.1 X 50	QF00S03-05Q1PTC	SF00S03-05Q1PTC	190,000
	2.1 X 100	QF00S03-10Q1PTC	SF00S03-10Q1PTC	198,000
	2.1 X 150	QF00S03-15Q1PTC	SF00S03-15Q1PTC	206,000
	4.6 X 50	QF00S03-0546PTC	SF00S03-0546PTC	190,000
	4.6 X 100	QF00S03-1046PTC	SF00S03-1046PTC	198,000
	4.6 X 150	QF00S03-1546PTC	SF00S03-1546PTC	206,000
5	2.1 X 50	QF00S05-05Q1PTC	SF00S05-05Q1PTC	180,000
	2.1 X 100	QF00S05-10Q1PTC	SF00S05-10Q1PTC	188,000
	2.1 X 150	QF00S05-15Q1PTC	SF00S05-15Q1PTC	196,000
	4.6 X 50	QF00S05-0546PTC	SF00S05-0546PTC	180,000
	4.6 X 100	QF00S05-1046PTC	SF00S05-1046PTC	188,000
	4.6 X 150	QF00S05-1546PTC	SF00S05-1546PTC	196,000
	4.6 X 250	QF00S05-2546PTC	SF00S05-2546PTC	230,000

EXP®ガードカートリッジカラム

粒子径	カラムサイズ	製品	/= / - / - \	
(μm)	内径X長さ(mm)	BioPro IEX QF	BioPro IEX SF	価格(円)
3	2.1 X 5	QF00S03-E5Q1GCC	SF00S03-E5Q1GCC	60,000
	4.6 X 5	QF00S03-E546GCC	SF00S03-E546GCC	60,000
5	2.1 X 5	QF00S05-E5Q1GCC	SF00S05-E5Q1GCC	60,000
	4.6 X 5	QF00S05-E546GCC	SF00S05-E546GCC	60,000

初めてご使用になる際は、EXP®ダイレクトコネクトホルダー(製品番号 XPCHUHP)をお買い求めください。

カートリッジホルダー

製品名/仕様	製品番号	価格(円)
EXP®ダイレクトコネクトホルダー(内径2.1, 3.0, 4.6 mm共通、チタニウムハイブリッドフェラル2個・ナット1個付き)	XPCHUHP	65,000

本カタログに記載している価格は、2025年6月現在の国内販売価格です。価格には消費税は含まれておりません。 EXPはOptimize Technologies, Inc. の登録商標です。

YMC 株式会社ワイエムシィ

お問い合わせ先:営業本部

〒600-8106 京都市下京区五条通烏丸西入醍醐町 284 YMC 烏丸五条ビル 4F

TEL (075) 342-4503 FAX (075) 342-4530

WEBSITE https://www.ymc.co.jp

