☆wet分野、dry分野、両分野による構造解析の進め方と事例を掲載!!

☆創薬研究の胆である「相互作用解析」や「各種DBの使い方」の事例が満載!!

新刊書籍 2023年7月発刊

タンパク質。構造解析手法と

In silico スクリーニングへの応用事例

~AlphaFold、In silico創薬、NMR、X線、クライオ電子顕微鏡~

●発刊日:2023年7月31日 ●体裁:A4判530頁 ●定価:88,000円(税込) ●ISBN:978-4-86104-971-2

※大学、公的機関、医療機関の方には割引価格(アカデミック価格)で販売いたします。 詳しくはお問い合わせください。

本書のポイント

構造解析の流れとコツを伝授

- ・溶液NMRの試料前処理と測定条件設定
- ・X線でのタンパク質構造解析の流れとコツ
- ・クライオ電子による構造解析事例の紹介

高品質なタンパク質結晶の求め方

- ・最適なタンパク質結晶化の条件設定の考え方
- ・タンパク質の結晶化戦略、保存法を紹介

多数のMDシミュレーション事例紹介

- ・糖鎖の3次元構造の動態予測
- ・タンパク質のフォールディング問題への解決
- ・パラメータや力場設定の決め方を解説

In silico創薬成功へのヒントが見つかる

- ・企業/研究機関が行うIn silico創薬の事例を紹介
- ・コンピュータと研究者の作業分担の違いが分かる
- ・低分子〜抗体医薬品まで幅広い事例の紹介

AlphaFoldによる創薬への可能性

- ・AlphaFold2の使い方と事例の紹介
- ・企業によるAlphaFold2を用いた研究の紹介

各種データベースについて解説

- ・PDB/UniProt/ChEMBLなどの使い方を紹介
- ・某企業によるADME評価データの DBシステムの構築事例の紹介

執筆者(敬称略)

※本書の目次は裏面をご覧ください。

横浜国立大学	児嶋 長次郎	広島大	東浦 彰史	岡山大学	墨 智成	京都大学	岩田 浩明
京都大学	菅瀬 謙治	高知大学	杉山 成	長浜バイオ大学	今村 比呂志	東京工業大学	大上 雅史
京都大学	森本大智	北海学園大学	友池 史明	東京大学	清水 謙多郎	日本大学	山岸 賢司
東京理科大学	西野 達哉	徳島大学	鈴木 良尚	(株)ちゃんフク	福田 宏幸	(株)Veritas In Silico	中村 慎吾
茨城工業高等専門学校	若松 孝	新潟県立大学	萩原 真	一丸ファルコス(株)	坂元 孝太郎	筑波大学	広川 貴次
兵庫県立大学	久保 稔	関西学院大学	山口 宏	(株)アルティフ・		京都大学	奥野 恭史
量子科学技術研究開発機構	中川 洋	静岡県立大学	菱木 麻美	ラボラトリーズ	相川 聖一	昭和大学	早川 大地
高輝度光科学研究センター	坂井 直樹	京都大学	名倉 淑子	金沢大学	三浦 伸一	名古屋大学	小池 亮太郎
金沢大学	福間 剛士	岡山理科大学	牧 祥	(国研)理化学研究所	金田 亮	東北大学	西 羽美
自然科学研究機構	宋 致宖	名古屋大学	中野 秀雄	近畿大学	中村 真也	ライフサイエンス統合	
自然科学研究機構	村田 和義	北里大学	志鷹 真由子	近畿大学	仲西 功	データベースセンター	池田 秀也
京都産業大学	横山 謙	北陸先端大	山口 拓実	帝人ファーマ(株)	角田 真二	立命館大学	小川 慶子
大阪大学	岸川 淳一	自然科学研究機構	谷中 冴子	帝人ファーマ(株)	熊澤 啓子	長浜バイオ大学	白井 剛
味の素(株)	山口 浩輝	(株)ツムラ	大渕 勝也	大正製薬(株)	牛山 文仁	(株)日本たばこ産業	篠田 清孝
味の素(株)	中田 國夫	自然科学研究機構	奥村 久士	農業・食品産業		(株)モルシス	池上 貴史
高エネルギー加速器研究機構	守屋 俊夫	大阪大学	松林 伸幸	技術総合研究機構	前田 美紀	シップスバイオサイエンス(株)	朴 鍾圭
九州工業大学	安永 卓生	Hira_Labo	平 とも子	大阪大学	高谷 大輔		

第1章 構造生物学のための主な物理的解析手法

★ 構造解析を行う際の前処理法や測定条件の検討とは!?

第1節 溶液NMRの手法を用いたタンパク質の立体構造解析

第2節 溶液NMRのための試料前処理と測定条件設定

第3節 タンパク質を多角的に捉えるNMR測定法

第4節 蛋白質-DNA複合体のX線結晶構造解析

第5節 タンパク質凝集体の分析法と結晶化分析

第6節 ラマン分光法の構造生物学的利用

第7節 中性子を活用した水とタンパク質の捉え方

第8節 シンクロトロン光(放射光)を活用したタンパク質構造研究

第9節 生細胞内部を可視化するナノ内視鏡の可能性

第2章 クライオ電子顕微鏡による構造解析

★ クライオ電顕の試料調整から活用例まで幅広く解説!!

第1節 クライオ電子顕微鏡によるタンパク質の構造解析

第2節 クライオ電子顕微鏡用の試料作成とその構造解析

第3節 産業用酵素開発におけるクライオ電子顕微鏡の活用

第4節 AI技術を応用したクライオ電子顕微鏡による解析

第5節 クライオ電子顕微鏡における画像処理

第3章 高品質なタンパク質結晶の求め方

★ 結晶化条件のパラメータ設定の最適化を解説!!

第1節 最適なタンパク質結晶化への条件検索

第2節 中性子用大型タンパク質結晶育成に向けた凝固ゲル中結晶利用

第3節 ハイドロゲルによるタンパク質結晶の保護法

第4節 塩濃度の違いによるタンパク質結晶の構造解析

第5節 ウェスタンブロット法によるタンパク質の検出

第6節 アミノ酸類を添加剤として用いたタンパク質の結晶化戦略

第7節 X線構造解析に向けたタンパク質結晶の凍結保存

第8節 膜タンパク質の結晶化

第9節 磁気力ブースターを利用した完全無容器結晶成長

第4章 分子シミュレーションによる

タンパク質構造予測

★ 複雑なタンパク質のシミュレーションの紹介!!

第1節 バイオインフォマティクスの今後の展望

第2節 タンパク質構造とアミノ酸配列の関係

第3節 分子シミュレーションによる糖鎖の3次元構造の動態予測

第4節 漢方薬におけるin silicoを用いた薬物評価

第5節 分子シミュレーションによる

タンパク質のフォールディング/ミスフォールディング

第6節 分子動力学シミュレーションと溶液統計力学理論を用いた

ペプチド凝集解析

第7節 OpenMMによるタンパク質のMDシミュレーション

第8節 タンパク質構造安定性における疎水性相互作用仮説の検証

第5章 AlphaFold2の可能性と タンパク質の立体構造解析事例

★ 業界に激震を与えたAlphaFoldについて徹底解説!!

第1節 タンパク質構造予測法AlphaFold2の可能性

第2節 タンパク質デザインによる産業応用への期待

第3節 AlphaFold2を用いた企業の取り組み

第4節 SWISS-MODELを活用したホモロジーモデリング

第5節 拡張アンサンブル法による3次元構造予測法

第6節 ベイズ推定を用いたタンパク質分子シミュレーション

第6章 In silicoスクリーニングへの応用事例

★ 様々なIn silicoスクリーニング事例の紹介!!

第1節 In silicoを用いたタンパク質―リガンドの相互作用解析と分子設計

第2節 In silico創薬技術に基づく

Computer-Aided Drug Designの考え方

第3節 In Silico創薬技術に基づく

Fragment-Based Drug Designの考え方と応用事例

第4節 化学的に正しい立体構造データの収集

第5節 フラグメント分子軌道法による

分子間相互作用データを収集したデータベース

第6節 ディープラーニングを用いた化合物―タンパク質の相互作用予測

第7節 PPI (タンパク質間相互作用) を標的とするドラッグデザイン

第8節 生体分子シミュレーションによる核酸医薬品開発への展開

第9節 分子標的創薬にむけたmRNAのインシリコ構造解析

第10節 タンパク質立体構造情報に基づく

In silicoドラッグリポジショニング創薬支援

第11節 スーパーコンピュータ「富岳」によるIn silico創薬

第12節 量子化学計算とプローブ分子を用いた分子相互作用場算出

第7章 In silico創薬に用いられる データベースとソフトウェアの使い方

★ 各種DBの使い方から、役立つソフトまで紹介!!

第1節 タンパク質立体構造データベースPDBと予測構造

第2節 アミノ酸配列関連データベースUniProtの使い方

第3節 タンパク質分類データベースInterProの使い方

第4節 生物活性物質データベース ChEMBL の使い方

第5節 タンパク質配列モチーフデータベースPROSITEの使い方

第6節 KNIMEを活用した創薬研究効率化の取り組み

第7節 MOEの分子構造データベースと創薬への活用

第8節 タンパク質構造予測ソフトウェアの紹介

❷技術情報協会

TECHNICAL INFORMATION INSTITUTE CO..LTD.

https://www.gijutu.co.jp/

TEL: 03-5436-7744

詳細な目次や内容の確認、 購入や試読こちらから

